High DNA methyltransferase 3B expression mediates 5-aza-deoxycytidine hypersensitivity in testicular germ cell tumors.
نویسندگان
چکیده
Testicular germ cell tumors (TGCT) are the most common solid tumors of 15- to 35-year-old men. TGCT patients are frequently cured with cytotoxic cisplatin-based therapy. However, TGCT patients refractory to cisplatin-based chemotherapy have a poor prognosis, as do those having a late relapse. Pluripotent embryonal carcinomas (EC) are the malignant counterparts to embryonic stem cells and are considered the stem cells of TGCTs. Here, we show that human EC cells are highly sensitive to 5-aza-deoxycytidine (5-aza-CdR) compared with somatic solid tumor cells. Decreased proliferation and survival with low nanomolar concentrations of 5-aza-CdR is associated with ATM activation, H2AX phosphorylation, increased expression of p21, and the induction of genes known to be methylated in TGCTs (MGMT, RASSF1A, and HOXA9). Notably, 5-aza-CdR hypersensitivity is associated with markedly abundant expression of the pluripotency-associated DNA methyltransferase 3B (DNMT3B) compared with somatic tumor cells. Knockdown of DNMT3B in EC cells results in substantial resistance to 5-aza-CdR, strongly indicating that 5-aza-CdR sensitivity is mechanistically linked to high levels of DNMT3B. Intriguingly, cisplatin-resistant EC cells retain an exquisite sensitivity to low-dose 5-aza-CdR treatment, and pretreatment of 5-aza-CdR resensitizes these cells to cisplatin-mediated toxicity. This resensitization is also partially dependent on high DNMT3B levels. These novel findings indicate that high expression of DNMT3B, a likely byproduct of their pluripotency and germ cell origin, sensitizes TGCT-derived EC cells to low-dose 5-aza-CdR treatment.
منابع مشابه
Acute Hypersensitivity of Pluripotent Testicular Cancer-Derived Embryonal Carcinoma to Low-Dose 5-Aza Deoxycytidine Is Associated with Global DNA Damage-Associated p53 Activation, Anti-Pluripotency and DNA Demethylation
Human embryonal carcinoma (EC) cells are the stem cells of nonseminoma testicular germ cells tumors (TGCTs) and share remarkable similarities to human embryonic stem (ES) cells. In prior work we found that EC cells are hypersensitive to low nanomolar doses of 5-aza deoxycytidine (5-aza) and that this hypersensitivity partially depended on unusually high levels of the DNA methyltransferase, DNMT...
متن کاملRefractory testicular germ cell tumors are highly sensitive to the second generation DNA methylation inhibitor guadecitabine
Testicular germ cell tumors (TGCTs) are the most common cancers of young males. A substantial portion of TGCT patients are refractory to cisplatin. There are no effective therapies for these patients, many of whom die from progressive disease. Embryonal carcinoma (EC) are the stem cells of TGCTs. In prior in vitro studies we found that EC cells were highly sensitive to the DNA methyltransferase...
متن کاملEffects of 5-aza-2ˈ-deoxycytidine and Valproic Acid on Epigenetic-modifying DNMT1 Gene Expression, Apoptosis Induction and Cell Viability in Hepatocellular Carcinoma WCH-17 cell line
Background: DNA molecule of the eukaryotic cells is found in the form of a nucleoprotein complex named chromatin. Two epigenetic modifications are critical for transcriptional control of genes, including acetylation and DNA methylation. Hypermethylation of tumor suppressor genes is catalyzed by various DNA methyltransferase enzymes (DNMTs), including DNMT1, DNMT2, and DNMT3. The most well chara...
متن کاملEffect of 5-aza-2′-deoxycytidine on p16INK4a, p14ARF, p15INK4b Genes Expression, Cell Viability, and Apoptosis in PLC/PRF5 and MIA Paca-2 Cell Lines
Background: Mammalian cell division is regulated by a complex includes cyclin-dependent kinases (Cdks) and cyclins, Cdk/cyclin complex. The activity of the complex is regulated by Cdk inhibitors (CKIs) compressing CDK4 (INK4) and CDK-interacting protein/kinase inhibitory protein (CIP/KIP) family. Hypermethylation of CKIs has been reported in various cancers. DNA methyltransferase inhibitors (DN...
متن کاملMechanisms of resistance to 5-aza-2'-deoxycytidine in human cancer cell lines.
5-aza-2'-deoxycytidine (DAC) is approved for the treatment of myelodysplastic syndromes, but resistance to this agent is common. In search for mechanisms of resistance, we measured the half maximal (50%) inhibitory concentration (IC(50)) of DAC and found it differed 1000-fold among a panel of cancer cell lines. The IC(50) was correlated with the doses of DAC that induced the most hypomethylatio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 69 24 شماره
صفحات -
تاریخ انتشار 2009